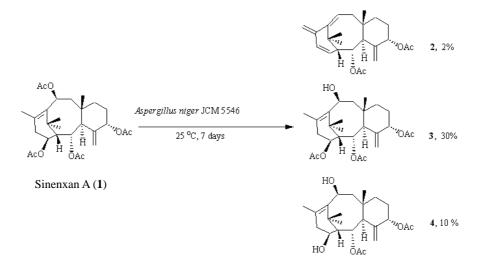
# A Taxatetraene from Microbial Transformation of Sinenxan A

Jun Gui DAI<sup>1,2</sup>\*, Lin YANG<sup>2, 3</sup>, Jun Ichi SAKAI<sup>2</sup>, Masayoshi ANDO<sup>2</sup>

<sup>1</sup> Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050

<sup>2</sup> Department of Chemistry and Chemical Engineering, Niigata University, Ikarashi 2-8050, Niigata 950-2181, Japan

<sup>3</sup> College of Life and Environmental Sciences, The Central University for Nationalities, Beijing 100081


**Abstract:** Sinenxan A [2 $\alpha$ , 5 $\alpha$ , 10 $\beta$ , 14 $\beta$ -tetraacetoxytaxa-4(20), 11-diene, **1**] was biotransformed by a filamentous fungus, *Aspergillus niger* JCM 5546, and an unusual taxatetraene [2 $\alpha$ , 5 $\alpha$ -acetoxytaxa-4(20), 10(11), 12(18), 13(14)-tetraene, **2**], together with two known products, 10 $\beta$ -deacetyl sinenxan A (**3**) and 10 $\beta$ , 14 $\beta$ -dideacetyl sinenxan A (**4**) were produced.

Keywords: Aspergillus niger, sinenxan A, taxatetraene, biotransformation.

Sinenxan A,  $2\alpha$ ,  $5\alpha$ ,  $10\beta$ ,  $14\beta$ -tetraacetoxy-4(20), 11-taxadiene, is a taxoid isolated from the callus cultures of *Taxus* spp. in high yields (*ca.*  $1\sim2\%$  of dry weight)<sup>1</sup>. The rich resources and its taxane-skeleton endow its valuable potential for the semisynthesis of paclitaxel or other structurally related bioactive compounds. A number of studies on its structural modification by chemical and biocatalytic approaches were reported<sup>2-11</sup>. Lately, we also reported its highly regio- and stereoselective hydroxylation at C-9 and C-7 by *Ginkgo* cell suspension cultures and fungus *Abisidia coerulea* IFO 4011. As a part of our ongoing research on the biotransformation of this type taxanes and obtain other derivatives of interest, a number of species of microorganisms and suspended cell cultures of plants were investigated for their capacity to transform taxanes. Here, we report the biotransformation of sinenxan A by a fungus, *A. niger* and one unusual product derived from this bioprocess.

To 2-day-old cell cultures of *A. niger* JCM 5546 (purchased from Japan Collection of Microorganisms) 300 mg (in acetone) of **1** was added, and three products (**2**, **3** and **4**; **Scheme 1**) were obtained after 7 days of incubation by the flash column chromatography and pre-HPLC in the yields of 2%, 30% and 10%, respectively. Their structures were identified as  $2\alpha$ ,  $5\alpha$ -acetoxytaxa-4(20), 10(11), 12(18), 13(14)-tetraene (**2**), 10β-deacetyl sinenxan A (**3**) and 10β, 14β-dideacetyl sinenxan A (**4**) based upon the <sup>1</sup>H NMR, <sup>1</sup>H-<sup>1</sup>H COSY, <sup>13</sup>C NMR, DEPT, HMQC, HMBC, IR and HRMS spectral data. Compounds **3** and **4** are known compounds <sup>8</sup>, while **2** is a new compound of which NMR spectral data were showed in **Table 1**.

<sup>\*</sup> E-mail: jgdai@imm.ac.cn.



### Scheme 1 Biotransformation of sinenxan A by A. niger JCM 5546

| Position              | <sup>13</sup> C <sup>b)</sup> | Connected <sup>1</sup> H <sup>c)</sup> | H-H correlation <sup>d)</sup> | HMBC <sup>e</sup>        |
|-----------------------|-------------------------------|----------------------------------------|-------------------------------|--------------------------|
| 1                     | 58.96 (d)                     | 2.37 (dd, 2.7, 5.4)                    | H-2, H-14                     | H-3, H-13, H-14, H-16    |
|                       |                               |                                        |                               | H-17                     |
| 2                     | 70.91 (d)                     | 5.53 (dd, 2.7, 7.6)                    | H-1, H-3                      | H-1, H-3                 |
| 3                     | 43.17 (d)                     | 3.03 (d, 7.6)                          | H-2                           | H-1, H-5, H-2, H-9, H-19 |
|                       |                               |                                        |                               | H-20                     |
| 4                     | 144.20 (s)                    |                                        |                               | H-3, H-20                |
| 5                     | 77.36 (d)                     | 5.11 (dd, 2.9, 3.2)                    | H-6                           | H-3, H-6, H-20           |
| 6                     | 30.01 (t)                     | 1.77 (m)                               | H-5, H-7                      | H-5, H-7                 |
| 7                     | 34.33 (t)                     | Ha: 2.05 (m); Hb: 1.12 (m)             | H-6                           | H-6, H-9, H-19           |
| 8                     | 46.12 (s)                     |                                        |                               | H-2, H-6, H-7, H-9, H-19 |
| 9                     | 39.76 (t)                     | Ha: 2.81 (dd, 12.9, 13.4);             | H-10                          | H-10, H-19               |
|                       |                               | Hb:1.72 (dd, 6.3, 13.9)                |                               |                          |
| 10                    | 125.86 (d)                    | 5.70 (dd, 6.1, 12.5)                   | H-9                           | H-9                      |
| 11                    | 147.82 (s)                    |                                        |                               | H-1, H-9, H-10, H-13     |
|                       |                               |                                        |                               | H-16, H-17, H-18         |
| 12                    | 150.70 (s)                    |                                        |                               | H-10, H-13, H-14, H-18   |
| 13                    | 134.63 (d)                    | 6.33 (d, 9.5)                          | H-14                          | H-14, H-13               |
| 14                    | 127.04 (d)                    | 5.58 (dd, 5.1, 9.5)                    | H-1, H-13                     | H-1, H-2, H-1            |
| 15                    | 37.71 (s)                     |                                        |                               | H-1, H-10, H-14, H-16    |
|                       |                               |                                        |                               | H-12                     |
| 16                    | 25.46 (q)                     | 1.56 (s)                               | H-17                          | H-17                     |
| 17                    | 30.81 (q)                     | 1.10 (s)                               | H-16                          | H-10                     |
| 18                    | 106.57 (t)                    | Ha: 4.92 (s); Hb: 4.72 (s)             | H-13                          | H-11                     |
| 19                    | 20.98 (q)                     | 0.98 (s)                               |                               | H-3, H-7, H-9            |
| 20                    | 113.82 (t)                    | Ha: 5.20 (s); Hb: 4.50 (s)             | H-3                           | H-3, H-3                 |
| 2- OCOCH <sub>3</sub> | 170.11 (s)                    |                                        |                               | H-2, 2- OCOCH            |
| $5-OCOCH_3$           | 170.00 (s)                    |                                        |                               | H-5, 5- OCO <u>CH</u>    |
| 2- OCOCH <sub>3</sub> | 21.52 (q)                     | 2.01 (s)                               |                               | · · ·                    |
| 5- OCOCH <sub>3</sub> | 21.25 (q)                     | 2.03 (s)                               |                               |                          |

Table 1NMR spectral data of compound  $2^{a)}$ 

<sup>a)</sup>CD<sub>3</sub>Cl, 500 MHz for <sup>1</sup>H-NMR, 125 MHz for <sup>13</sup>C NMR, TMS,  $\delta$  ppm; <sup>b)</sup> Multiplicities were determined by DEPT; <sup>c)</sup> Connections were determined by HMQC, multiplicities and coupling constants in Hz are in parentheses; <sup>d)</sup> Determined by <sup>1</sup>H-<sup>1</sup>H COSY; <sup>e)</sup>Correlations from C to the indicated protons.

## 738 A Taxatetraene from Microbial Transformation of Sinenxan A

The taxatetraene type structure of taxane has not been found in the natural *Taxus* plants yet, these results indicated that biotransformation technique could diversify the natural products. Moreover, in authors' opinion, this unusual structure might lead to a rather unique and interesting consideration on the biosynthesis of taxoid in nature.

### Acknowlegments

This work is supported by the National Natural Science Foundation of China (Project No. 30100230) and the Japan Society for the Promotion of Science (Project No. 1300127).

### **References and Notes**

- 1. Y. Q. Wu, W. H. Zhu, J. Lu, et al., Chin. Pharm. J., 1998, 33, 15.
- 2. G. Y. Huang, J. Y. Guo, X. T. Liang, Acta Pharm. Sin., 1998, 33, 576.
- 3. S. H. Hu, X. F. Tian, W. H. Zhu, et al., J. Nat. Prod., 1996, 59, 1006.
- 4. S. H. Hu, X. F. Tian, W. H. Zhu, et al., Tetrahedron, 1996, 26, 8739.
- 5. J. G. Dai, H. Z. Guo, D. Lu, et al., Tetrehedron Lett., 2001, 42, 4677.
- 6. J. G. Dai, M. Ye, H. Z. Guo, et a.l, Tetrehedron Lett., 2002, 58, 5659.
- 7. J. G. Dai, Y. J. Cui, W. H. Zhu, et al., Planta Medica, 2002, 68, 1055
- 8. J. G. Dai, M. Ye, H. Z. Guo, et al., Bioorganic Chemistry, 2003, 31, 345.
- 9. J. G. Dai, S. J. Zhang, J. Sakai, et al., Tetrehedron Lett., 2003, 44, 1091.
- 10. J. G. Dai, M. Zhang, M. Ye, et al., Chin. Chem. Lett., 2003, 14, 804.
- 11. M. Zhang, D. L. Yin, J. Y. Guo, et al., Tetrehedron Lett., 2002, 43, 9425.
- 12. selected data of **2**: white powder, mp: 87-89 °C;  $[\alpha]_{D}^{20}$  -8.04 (*c* 0.58, CHCl<sub>3</sub>); IR (CHCl<sub>3</sub>) *v* 3036, 1732, 1376, 1236, 1216, 1022 cm<sup>-1</sup>; HRESIMS *m*/*z* [M+H]<sup>+</sup> 385.2379 (calcd. for C<sub>24</sub>H<sub>33</sub>O<sub>4</sub> 385.2379), [M+Na]<sup>+</sup> 407.2199 (calcd. for C<sub>24</sub>H<sub>32</sub>O<sub>4</sub> Na, 407.2198).

Received 15 June, 2004